30分钟理解Spark的基本原理

来自:Python与算法之美(微信号:Python_Ai_Road),作者:梁云1991
本文主要来自厦门大学林子雨老师的《Spark编程基础》课程读书笔记

一,Spark优势特点


作为大数据计算框架MapReduce的继任者,Spark具备以下优势特性。


1,高效性


不同于MapReduce将中间计算结果放入磁盘中,Spark采用内存存储中间计算结果,减少了迭代运算的磁盘IO,并通过并行计算DAG图的优化,减少了不同任务之间的依赖,降低了延迟等待时间。内存计算下,Spark 比 MapReduce 快100倍。


2,易用性


不同于MapReduce仅支持Map和Reduce两种编程算子,Spark提供了超过80种不同的Transformation和Action算子,如map,reduce,filter,groupByKey,sortByKey,foreach等,并且采用函数式编程风格,实现相同的功能需要的代码量极大缩小。


3,通用性


Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。


这些不同类型的处理都可以在同一个应用中无缝使用。这对于企业应用来说,就可使用一个平台来进行不同的工程实现,减少了人力开发和平台部署成本。


4,兼容性


Spark能够跟很多开源工程兼容使用。如Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,并且Spark可以读取多种数据源,如HDFS、HBase、MySQL等。





二,Spark基本概念


RDD:是弹性分布式数据集(Resilient Distributed Dataset)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型。


DAG:是Directed Acyclic Graph(有向无环图)的简称,反映RDD之间的依赖关系。


Driver Program:控制程序,负责为Application构建DAG图。


Cluster Manager:集群资源管理中心,负责分配计算资源。


Worker Node:工作节点,负责完成具体计算。


Executor:是运行在工作节点(Worker Node)上的一个进程,负责运行Task,并为应用程序存储数据。


Application:用户编写的Spark应用程序,一个Application包含多个Job。


Job:作业,一个Job包含多个RDD及作用于相应RDD上的各种操作。


Stage:阶段,是作业的基本调度单位,一个作业会分为多组任务,每组任务被称为“阶段”。


Task:任务,运行在Executor上的工作单元,是Executor中的一个线程。


总结:Application由多个Job组成,Job由多个Stage组成,Stage由多个Task组成。Stage是作业调度的基本单位。



三,Spark架构设计


Spark集群由Driver, Cluster Manager(Standalone,Yarn 或 Mesos),以及Worker Node组成。对于每个Spark应用程序,Worker Node上存在一个Executor进程,Executor进程中包括多个Task线程。



四,Spark运行流程


1,Application首先被Driver构建DAG图并分解成Stage。


2,然后Driver向Cluster Manager申请资源。


3,Cluster Manager向某些Work Node发送征召信号。


4,被征召的Work Node启动Executor进程响应征召,并向Driver申请任务。


5,Driver分配Task给Work Node。


6,Executor以Stage为单位执行Task,期间Driver进行监控。


7,Driver收到Executor任务完成的信号后向Cluster Manager发送注销信号。


8,Cluster Manager向Work Node发送释放资源信号。


9,Work Node对应Executor停止运行。




五,Spark部署模式


Local:本地运行模式,非分布式。


Standalone:使用Spark自带集群管理器,部署后只能运行Spark任务。


Yarn:Haoop集群管理器,部署后可以同时运行MapReduce,Spark,Storm,Hbase等各种任务。


Mesos:与Yarn最大的不同是Mesos 的资源分配是二次的,Mesos负责分配一次,计算框架可以选择接受或者拒绝。



六,RDD数据结构


RDD全称Resilient Distributed Dataset,弹性分布式数据集,它是记录的只读分区集合,是Spark的基本数据结构。


RDD代表一个不可变、可分区、里面的元素可并行计算的集合。


一般有两种方式可以创建RDD,第一种是读取文件中的数据生成RDD,第二种则是通过将内存中的对象并行化得到RDD。


//通过读取文件生成RDD
val  rdd = sc.textFile("hdfs://hans/data_warehouse/test/data")


//通过将内存中的对象并行化得到RDD
val num = Array(1,2,3,4,5)
val rdd = sc.parallelize(num)
//或者 val rdd = sc.makeRDD(num)


创建RDD之后,可以使用各种操作对RDD进行编程。


RDD的操作有两种类型,即Transformation操作和Action操作。转换操作是从已经存在的RDD创建一个新的RDD,而行动操作是在RDD上进行计算后返回结果到 Driver。


Transformation操作都具有 Lazy 特性,即 Spark 不会立刻进行实际的计算,只会记录执行的轨迹,只有触发Action操作的时候,它才会根据 DAG 图真正执行。


操作确定了RDD之间的依赖关系。


RDD之间的依赖关系有两种类型,即窄依赖和宽依赖。窄依赖时,父RDD的分区和子RDD的分区的关系是一对一或者多对一的关系。而宽依赖时,父RDD的分区和子RDD的分区是一对多或者多对多的关系。


宽依赖关系相关的操作一般具有shuffle过程,即通过一个Patitioner函数将父RDD中每个分区上key不同的记录分发到不同的子RDD分区。


依赖关系确定了DAG切分成Stage的方式。


切割规则:从后往前,遇到宽依赖就切割Stage。


RDD之间的依赖关系形成一个DAG有向无环图,DAG会提交给DAGScheduler,DAGScheduler会把DAG划分成相互依赖的多个stage,划分stage的依据就是RDD之间的宽窄依赖。遇到宽依赖就划分stage,每个stage包含一个或多个task任务。然后将这些task以taskSet的形式提交给TaskScheduler运行。



七,WordCount范例


只需要四行代码就可以完成WordCount词频统计。


val file = sc.textFile("hello.txt")
val word = file.flatMap(_.split(","))
val wordOne = word.map((_,1))
wordOne.reduceByKey(_+_)


推荐↓↓↓
人工智能与大数据
上一篇:3小时Scala入门 下一篇:一文入门Scikit-Learn分类器