常用的9个人脸数据库

来自:学术头条(微信号:SciTouTiao),作者:AMiner

本文主要介绍以下几种常用的人脸数据库:


(1)FERET人脸数据库

http://www.nist.gov/itl/iad/ig/colorferet.cfm

由FERET项目创建,此图像集包含大量的人脸图像,并且每幅图中均只有一个人脸。该集中,同一个人的照片有不同表情、光照、姿态和年龄的变化。包含1万多张多姿态和光照的人脸图像,是人脸识别领域应用最广泛的人脸数据库之一。其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一。


(2)CMU Multi-PIE人脸数据库

http://www.flintbox.com/public/project/4742/

由美国卡耐基梅隆大学建立。所谓“PIE”就是姿态(Pose),光照(Illumination)和表情(Expression)的缩写。CMU Multi-PIE人脸数据库是在CMU-PIE人脸数据库的基础上发展起来的。包含337位志愿者的75000多张多姿态,光照和表情的面部图像。其中的姿态和光照变化图像也是在严格控制的条件下采集的,目前已经逐渐成为人脸识别领域的一个重要的测试集合。



(3)YALE人脸数据库(美国,耶鲁大学)

http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html

由耶鲁大学计算视觉与控制中心创建,包含15位志愿者的165张图片,包含光照、表情和姿态的变化。

Yale人脸数据库中一个采集志愿者的10张样本,相比较ORL人脸数据库Yale库中每个对象采集的样本包含更明显的光照、表情和姿态以及遮挡变化。



(4)YALE人脸数据库B

https://computervisiononline.com/dataset/1105138686

包含了10个人的5850幅在9种姿态,64种光照条件下的图像。其中的姿态和光照变化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析。由于采集人数较少,该数据库的进一步应用受到了比较大的限制。



(5)MIT人脸数据库

由麻省理工大学媒体实验室创建,包含16位志愿者的2592张不同姿态(每人27张照片),光照和大小的面部图像。


(6)ORL人脸数据库

https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

由英国剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,表情和面部饰物的变化。该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大。


ORL人脸数据库中一个采集对象的全部样本库中每个采集对象包含10幅经过归一化处理的灰度图像,图像尺寸均为92×112,图像背景为黑色。其中采集对象的面部表情和细节均有变化,例如笑与不笑、眼睛睁着或闭着以及戴或不戴眼镜等,不同人脸样本的姿态也有变化,其深度旋转和平面旋转可达20度。



(7)BioID人脸数据库

https://www.bioid.com/facedb/

包含在各种光照和复杂背景下的1521张灰度面部图像,眼睛位置已经被手工标注。



(8)UMIST图像集

由英国曼彻斯特大学建立。包括20个人共564幅图像,每个人具有不同角度、不同姿态的多幅图像。


(9)年龄识别数据集IMDB-WIKI

https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

包含524230张从IMDB和Wikipedia爬取的名人数据图片。应用了一个新颖的化回归为分类的年龄算法。本质就是在0-100之间的101类分类后,对于得到的分数和0-100相乘,并将最终结果求和,得到最终识别的年龄。


推荐↓↓↓
数据库开发
上一篇:关于MySQL内核,一定要知道的! 下一篇:为什么说Redis是单线程的?